	Alternative method 1		
	Correct method to work out any viable distance, eg		
	$\frac{1}{2} \times \frac{5}{60} \times 102$ or 4.25		first section
	or		
	$102 \times \frac{40}{60}$ or 68		second section
	or	M1	
	$\frac{1}{2}(102+96) \times \frac{15}{60}$ or $96 \times \frac{15}{60}$		third section
	and $\frac{1}{2} \times 6 \times \frac{15}{60}$ or 24 and 0.75		
	or 24.75 or		
			first and second sections
1	$\frac{1}{2} \left(\frac{40}{60} + \frac{45}{60} \right) \times 102 \text{ or } 72.25$		
	Correct method to work out all parts of distance, eg		97 scores M1M1
	$\frac{1}{2} \times \frac{5}{60} \times 102$ or 4.25	M1dep	
	and		
	$102 \times \frac{40}{60}$ or 68		
	and		
	$\frac{1}{2}(102 + 96) \times \frac{15}{60}$ or 24.75		
	130 – their whole distance		eg
	or 130 – 97	M1dep	130 – their 4.25 – their 68 – their 24.75
			dep on M2
	33	A1	

	Alternative method 2			
	Correct method to work out 60 × any viable distance, eg			
	$\frac{1}{2} \times 5 \times 102$ or 255		first section	
	or			
	102 × 40 or 4080		second section	
	or	M1		
	$\frac{1}{2}$ (102 + 96) × 15 or 96 × 15 and		third section	
	$\frac{1}{2}$ × 6 × 15 or 1440 and 45 or 1485			
	or			
	$\frac{1}{2}$ (40 + 45) × 102 or 4335		first and second section	s
1 cont	Correct method to work out 60 × all parts of distance, eg		5820 implies M1M1	
	$\frac{1}{2} \times 5 \times 102$ or 255	M1dep		
	and			
	102 × 40 or 4080			
	and			
	$\frac{1}{2}$ (102 + 96) × 15 or 1485			
	130 – their whole distance		eg	
	or $130 - \frac{5820}{60}$	M1dep	130 – their 255 + their 4080 + their 1485 60	
	or 130 – 97		dep on M2	
	33	A1		
	Additional Guidance			
	Accept fractions used as decimals correct to 2 dp or better			

	Alternative method 1		
	16 ² or 256 and 30 ² or 900	M1	oe implied by 1156
	$\sqrt{16^2 + 30^2}$ or $\sqrt{256 + 900}$ or $\sqrt{1156}$ or 34	M1dep	oe eg $\sqrt{16^2 + 30^2 - 2 \times 16 \times 30 \times \cos 90}$
	52 × their 34 or 1768	M1dep	oe if M1M0 their 34 can be any value other than 16, 30 or 52 dep on 1st M
	0.5 × 30 × 16 or 240	M1	oe eg 0.5 × 30 × 16 × sin 90
	2008	A1	SC3 2248
2	Alternative method 2		
	$\tan^{-1}\frac{16}{30}$ or [28, 28.1] or $\tan^{-1}\frac{30}{16}$ or [61.9, 62]	M1	oe may be on diagram
	$\frac{30}{\cos(\text{their [28, 28.1]})}$ or $\frac{16}{\cos(\text{their [61.9, 62]})}$ or 34	M1dep	oe eg $\frac{16}{\sin(\text{their}[28, 28.1])}$ or $30\cos(\text{their}[28, 28.1]) + 16\cos(\text{their}[61.9, 62])$
	52 × their 34 or 1768	M1dep oe if M1M0 their 34 can be any value oth than 16, 30 or 52 dep on 1st M	
	0.5 × 30 × 16 or 240	M1	oe eg 0.5 × 30 × 16 × sin 90
	2008	A1	SC3 2248

2 cont	Additional Guidance				
	Up to M4 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	The 4th mark in Alts 1 and 2 is not dependent on any other marks				
	34 or 1768 or 240 may be on the diagram				
	SC3 is for using 30 × 16 for the area of the triangle				
	Ignore units				

Q	Answer	Mark	Comments		
	Alternative method 1 – horizontal split				
	x(x-2) and $3(x-5)$	M1	oe may be seen as two areas		
	$x^2 - 2x + 3x - 15 (= 75)$	M1dep	oe expression with all brackets expanded		
	$x^2 - 2x + 3x - 15 = 75$		with full working seen		
	and $x^2 + x - 90 = 0$				
	or	A1			
	$x^2 + x - 15 = 75$				
	and $x^2 + x - 90 = 0$				
	Alternative method 2 – vertical split				
	(x-5)(x+1) and $5(x-2)$	M1	oe may be seen as two areas		
	$x^2 - 5x + x - 5 + 5x - 10 $ (= 75)		oe expression with all brackets expanded		
3(a)	or	M1dep			
5(4)	$x^2 - 4x - 5 + 5x - 10 $ (= 75)				
	$x^2 - 5x + x - 5 + 5x - 10 = 75$		with full working seen		
	and $x^2 + x - 90 = 0$				
	or	A1			
	$x^2 - 4x - 5 + 5x - 10 = 75$				
	and $x^2 + x - 90 = 0$				
	Alternative method 3 – large rectangle subtract 3 × 5				
	$x(x + 1)$ and 3×5	M1	oe may be seen as two areas		
	$x^2 + x - 15 (= 75)$	M1dep	oe expression with brackets expanded and 3 × 5 evaluated		
	$x^2 + x - 15 = 75$	Λ4	with full working seen		
	and $x^2 + x - 90 = 0$	A1			

Q	Answer	Mark	Comments		
	Alternative method 4 – split into three areas				
3(a) cont	3(x-5) and $(x-2)(x-5)$ and $5(x-2)$	M1	oe may be seen as three areas		
	$3x - 15 + x^2 - 2x - 5x + 10 + 5x - 10 (= 75)$ or $3x - 15 + x^2 - 7x + 10 + 5x - 10 (= 75)$	M1dep	oe expression with all brackets expanded		
	$3x - 15 + x^{2} - 2x - 5x + 10 + 5x - 10 = 75$ and $x^{2} + x - 90 = 0$ or $3x - 15 + x^{2} - 7x + 10 + 5x - 10 = 0$	A1	with full working seen		
	75 and $x^2 + x - 90 = 0$				
	Additional Guidance				
	Ignore attempts to solve the equation or substituting values for x				
	Condone missing end bracket for M1				
	Condone missing pairs of brackets if eg $3 \times x - 5$ recovered to $3x - 15$	1			

Q	Answer	Mark	Comments	
	(x-9)(x+10) (=0) and answer 9	B2	B1 $(x-9)(x+10) (= 0)$ and answer 9 and -10 SC1 $(x+9)(x-10) (= 0)$ and answer 10))
	Additional Guidance			
3(b)	If no response is seen, check part (a) for any creditworthy work			
	Answer 9 with no working can be awarded up to B2 from correct factorising seen in part (a)			
	Answer 9 from quadratic formula or completing the square			B1
	Answer 9 and -10 from quadratic formula or completing the square			В0
	Answer from trial and improvement only			В0

Q	Answer	Mark	Comments	
	$\frac{1}{2}$ × (14 + 20) × 11 or 187	M1	oe any correct method to find the area of the trapezium	
	$\frac{1}{2} \times 10 \times 7 \text{ or } 35$	M1	oe eg $\frac{1}{2} \times 10 \times 7 \times \sin 90$	
	222	A 1		
	Additional Guidance			
	Up to M2 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
4	Ignore Pythagoras' theorem, trigonometry or perimeter calculations			
	$14\times11+\frac{1}{2}\times6\times11$			M1
	Missing brackets must be recovered			
	eg1 $\frac{1}{2} \times 20 + 14 \times 11$ and 187			M1
	eg2 $\frac{1}{2} \times 20 + 14 \times 11$			MO
	20 × 11 = 220			M0M0A0